
J. Fluid Mech. (2007), vol. 572, pp. 111–120. c© 2007 Cambridge University Press

doi:10.1017/S0022112006003648 Printed in the United Kingdom

111

Detection of Lagrangian coherent structures
in three-dimensional turbulence

By M. A. GREEN1, C. W. ROWLEY1 AND G. HALLER2

1Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
2Department of Mechanical Engineering, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

(Received 14 June 2006 and in revised form 20 October 2006)

We use direct Lyapunov exponents (DLE) to identify Lagrangian coherent structures
in two different three-dimensional flows, including a single isolated hairpin vortex,
and a fully developed turbulent flow. These results are compared with commonly used
Eulerian criteria for coherent vortices. We find that, despite additional computational
cost, the DLE method has several advantages over Eulerian methods, including
greater detail and the ability to define structure boundaries without relying on a
preselected threshold. As a further advantage, the DLE method requires no velocity
derivatives, which are often too noisy to be useful in the study of a turbulent flow.
We study the evolution of a single hairpin vortex into a packet of similar structures,
and show that the birth of a secondary vortex corresponds to a loss of hyperbolicity
of the Lagrangian coherent structures.

1. Introduction
In this paper, we use direct Lyapunov exponents (DLE) to identify Lagrangian

coherent structures in three-dimensional turbulent flows. Previous work on flow
structure identification has been primarily Eulerian, i.e. it has been concerned with
the spatial structure of quantities derived from the instantaneous velocity field and its
gradient. The resulting Eulerian coherent structure criteria have been broadly used in
flow structure identification, although none has emerged as a definitive tool of choice.

By contrast, Lagrangian methods identify flow structures based on the properties
of fluid particle trajectories. An immediate advantage of these methods is their
objectivity: they remain invariant with respect to rotation of the reference frame. A
further advantage is their insensitivity to short-term anomalies in the velocity field.
Computing Lagrangian quantities, however, can be computationally expensive. For
this reason, the present study is partly aimed at weighing the efficacy of Lagrangian
structure idenification against its computational cost.

1.1. Eulerian methods

Eulerian coherent structure criteria are typically formulated in terms of the invariants
of the velocity gradient tensor ∇u. The criteria to be discussed here include the
Q-criterion and the swirling strength criterion.

The Q-criterion, developed by Hunt, Wray & Moin (1988), locates regions where
rotation dominates strain in the flow. Letting S and Ω denote the symmetric and
antisymmetric parts of ∇u, one defines Q as the second invariant of ∇u, given for
incompressible flow by

Q = 1
2
(‖Ω‖2 − ‖S‖2), (1.1)
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where ‖ · ‖ is the Euclidean (or Frobenius) matrix norm. A coherent vortex is defined
as a region where Q > 0.

The swirling strength criterion, employed by Zhou et al. (1999), seeks flow structures
in regions where ∇u has a complex pair of eigenvalues, which indicates locally
spiralling streamlines. The swirling strength λ2

ci is then defined as the squared
magnitude of the imaginary part of the complex eigenvalues. Coherent vortices are
defined as areas where the swirling strength is greater than some positive threshold.

Other Eulerian criteria have also been used for structure identification, and some of
these have been compared to Lagrangian criteria in Haller (2005). These include the
�-criterion (Chong, Perry & Cantwell 1990), which defines the vortex as those regions
where ∇u has complex eigenvalues, and the λ2-criterion (Jeong & Hussein 1995),
which identifies pressure minima within two-dimensional subspaces. Additionally,
Chakraborty, Balachandar & Adrian (2005) proposed using the ratio of the real and
imaginary parts of the complex eigenvalues of ∇u to refine the definition of a vortex
core.

These criteria identify similar structures in most flows, but they share several
disadvantages. In particular, though they are invariant with respect to Galilean
transformations, they are not invariant to time-dependent rotations, and thus are not
objective (frame-independent). Furthermore, in practice all the above Eulerian criteria
require a user-defined threshold to indicate the regions where a structure exists. In
addition, the boundaries of the structure depend on the selected threshold, lending
subjectivity to the definition of the size or boundary of the structure.

1.2. A Lagrangian method

The Lagrangian criterion used in this study is the direct Lyapunov exponent (DLE)
method (Haller 2001). At each point in space, this scalar is a measure of the rate
of separation of neighbouring particle trajectories initialized near that point. More
precisely, if x(t, x0, t0) denotes the position of a particle at time t , that began at
position x0 at time t0, one defines a coefficient of expansion σT as the square of the
largest singular value of the deformation gradient ∂x(t0 + T , x0, t0)/∂x0:

σT (x0, t0) = λmax

([
∂x(t0 + T , x0, t0)

∂x0

]T [
∂x(t0 + T , x0, t0)

∂x0

])
. (1.2)

The DLE field is then defined as

DLET (x0, t0) =
1

2T
log σT (x0, t0). (1.3)

Since the maximum eigenvalue is used in the definition of σT , direction information
is not retained in DLET (x0, t0). A point x0 will have a high DLE value if there is a
great amount of expansion in one direction, even if there is compression in all other
directions.

Regions of maximum material stretching generate local maximizing curves (ridges)
for the DLE field. The converse is not true: local maxima of the DLE field may
indicate either locally maximal stretching or locally maximal shear. Trajectories that
stretch relative to each other when integrated in negative time converge in forward
time. This is analogous to passive scalars in a fluid flow collecting in coherent
structures obtained from flow visualization. Therefore, if the DLE is calculated by
integrating trajectories in backward time (T < 0), ridges in the DLE field may indicate
attracting material lines, or attracting Lagrangian coherent structures (attracting LCS)
(Haller & Yuan 2000). Integrating trajectories in forward time (T > 0) may produce
DLE ridges that mark the location of repelling LCS. In order to confirm that the
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Figure 1. DLE plots of Hill’s spherical vortex, with white showing maximum values:
(a) short integration time, and (b) long integration time.

ridges are indeed hyperbolic LCS (instead of regions of maximal shear), one may
calculate the strain rate normal to the ridge, as discussed further in § 2.2. Quantitative
criteria for defining ridges in two-dimensional DLE fields have been given by Shadden,
Lekien & Marsden (2005).

These positive-time and negative-time LCS delineate the boundary between
qualitatively different regions in the flow (Shadden, Dabiri & Marsden 2006). For
instance, figure 1 shows the backward-time DLE for a cross-section of Hill’s spherical
vortex, for two different integration times. The boundary of the spherical vortex is
clear. In figure 1(a), the complete boundary is not seen, but as the integration time
is increased, the whole boundary emerges and the LCS becomes sharper and clearer.
The integration time can be increased or decreased depending on the amount of detail
desired from the calculation, but the location of the ridge indicating the boundary of
the vortex does not change.

Past applications of the DLE as a structure identification tool in two dimensions
include LCS in two-dimensional quasi-geostrophic turbulence (Haller & Yuan 2000),
LCS near the stratospheric polar vortex (Koh & Legras 2002), LCS in freely decaying
two-dimensional turbulence (Lapeyre 2002), and LCS in a magnetically forced two-
dimensional conducting fluid experiment (Voth, Haller & Gollub 2002). More recently,
Lekien & Leonard (2004) used the DLE method to find coherent structures in
Monterey Bay based on radar data, and Shadden et al. (2006) employed DLE to
identify the structure of a piston-generated vortex ring and also captured the vortex
ring wake structure of a jellyfish from two-dimensional DPIV data.

The DLE from discrete data has been shown to be robust and relatively insensitive
to imperfect velocity data as long as the errors remain small in a special time-weighted
norm (Haller 2002). Three-dimensional DLE has been computed by Haller (2005) on
two established analytic flow solutions. Here, we apply DLE to physically relevant
turbulent flows in the interest of detailing structures until now investigated using only
Eulerian methods.

In this study, we focus on finding attracting material structures (which correspond
to structures seen using flow visualization in experiments), and accordingly all
calculations of DLE fields shown here are for backward time.

2. Applications
2.1. Isolated hairpin vortex

We begin by studying a single hairpin vortex, a structure commonly found in turbulent
wall-bounded flows (Theodorsen 1955). For this case, the Eulerian and Lagrangian
criteria may be compared in an unsteady flow in which the structure location and
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Figure 2. An evolved isolated hairpin vortex generated by linear stochastic estimation,
plotted using 10 % maximum λ2

ci . (a) Initial condition, (b) t+ = 63, and (c) t+ = 171.

qualitative shape are known a priori from previous numerical results and experiments,
such as those of Head & Bandyopadhyay (1981) and Smith & Walker (1991).

The method we use to extract a single hairpin vortex was introduced by Zhou et al.
(1999). First, a direct numerical simulation (DNS) of a fully developed turbulent
channel flow was performed in a domain periodic in the streamwise and spanwise
directions, using the method of Kim, Moin & Moser (1987). The calculation used
a spectral collocation method with Fourier modes in the streamwise and spanwise
directions and with Chebyshev modes in the wall-normal direction, and a second-
order Adams–Bashforth time march. Our data were validated by comparing the mean
profiles, Reynolds stresses, log law, and r.m.s. velocity fluctuations to the original
calculation of Kim et al. (1987). The Reynolds number based on wall friction velocity
and channel half-width δ was Reτ = 180, with a grid resolution of 128 × 129 × 128
points and a domain of length 2πδ in both streamwise and spanwise directions.

Next, statistics from this simulation are used to extract a single hairpin vortex. One
signature of a hairpin vortex is a fluctuation velocity vector in the second quadrant
(u′ < 0, v′ > 0, w′ = 0) at the location of the vortex. In Zhou et al. (1999), linear
stochastic estimation is used to identify the statistically most probable flow field that
has a specified velocity, here (u′, v′, w′) = (−8.16, 3.45, 0), at a prescribed point in the
flow (here, a wall-normal location of y+ = 49). These values are the same as in Zhou
et al. (1999), and the resulting most probable flow field is used as an initial condition
for the DNS solver to study the evolution of the structure.

Figure 2(a) shows the iso-surface of the swirl criterion (10 % maximum value)
for the initial condition generated by the procedure described above. This structure
was evolved in time, and the structure based on 10 % maximum swirl is shown in
figures 2(b) and 2(c), at two time instants, showing the development of a secondary
hairpin. The threshold for these plots (i.e. the value of the level set of swirling strength
λci) was chosen to correspond to Zhou et al. As this hairpin vortex develops into
a packet, there are only small differences in structure for different threshold values,
but the size of the structure varies. Additionally, swirl is the only Eulerian criterion
plotted because for appropriate thresholds there was little distinction among Eulerian
criteria plots.

Figure 3(a–d) shows three two-dimensional plots of the negative-time DLE
evaluated at t+ = 63, as well as the location of these planes in the three-dimensional
volume. Two-dimensional planes are used to study the Lagrangian structure as
opposed to three-dimensional iso-surfaces because while we expect the LCS to depict
the boundaries of the structure, these are not constant value surfaces. Therefore,
we reconstruct the Lagrangian structure skeleton using data from a small number
of two-dimensional planes. The resolution of the DLE data is higher than that of
the Eulerian, as the grid of trajectories to be integrated is not restricted to be the
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Figure 3. Two-dimensional DLE plots of the isolated hairpin evolved to t+ = 63. (a) 10 %
maximum λ2

ci superimposed with the location of the three planes, (b) constant-streamwise cut,
(c) constant-spanwise cut, and (d) constant wall-normal cut (y+ = 98).

same size as the DNS grid, and linear interpolation is used to determine the velocity
between grid points. For the plots of the isolated hairpin, the DLE plot resolution
is greater by a factor of 6 in all three dimensions. Only a portion of the domain is
plotted, including the entire streamwise domain span, half the channel width, and the
middle third of the spanwise extent. All the calculations presented used on the order
of 500–1000 instantaneous data sets for each plot.

The plots in figure 3 show the results from a DLE calculation using an integration
time of t+ = 45. A distinct LCS is seen as the boundary of the hairpin vortex. As
with Hill’s spherical vortex, using a larger integration time introduces greater detail,
but the size and outer shape of the structure do not change. Here, the (backward)
integration time may be at most t+ = 63, as of course we cannot evolve backward in
time earlier than the initial condition. At this moment in the hairpin evolution, not
many differences exist between the DLE results using the longest possible integration
time and those using an intermediate integration time.

Figure 4 illustrates a comparison between the LCS and the Eulerian criteria. In
figure 4(a), a ‘skeleton’ of points where the DLE is greater than 60 % of its maximum
is shown over level sets of swirling strength λci . The extent of the Eulerian structure
depends on the threshold used, but the boundary indicated by DLE is independent
of integration time or any other parameters. Although some of the Eulerian criteria
discussed in the introduction approximate these structures better than others, none
capture the amount of detail that DLE does. Comparable level sets of 60 % maximum
DLE are plotted in figure 4(b). The three-dimensional DLE field was calculated on
one fifth the channel domain in the streamwise and spanwise directions with four
times the resolution of the DNS. In the wall-normal direction, DLE was calculated
on half the domain with six times the resolution. The three-dimensional structure
marks the separation between fluid entrained into the hairpin structure, and that
which convects with the outer flow. The two-dimensional ‘skeleton’ is again plotted
to illustrate the internal LCS detail under the outer shell. As previously noted, the
iso-surface is not an accurate depiction of the LCS, but at 60 % maximum DLE
value, the level set approximates the LCS surface.
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Figure 4. (a) Iso-surfaces of 10 % maximum λ2
ci (white) superimposed on three planes of

DLE � 60 % maximum (black). (b) Translucent iso-surfaces of 60 % maximum DLE (white)
superimposed on three planes of DLE � 60% maximum (black).
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Figure 5. Two-dimensional DLE plots of the isolated hairpin evolved to t+ = 171. (a) 10 %
maximum λ2

ci superimposed with the location of the three planes, (b) constant-streamwise cut,
(c) constant-spanwise cut, and (d) constant wall-normal cut (y+ = 95).

As the single hairpin evolves further, it induces a secondary hairpin to form, and
eventually forms a family or ‘packet’ of structures. The corresponding structures are
shown in figure 5, at time t+ = 171 (also for an integration time of t+ = 45). Here,
the 10 % maximum swirl iso-surface is plotted for reference, and figure 5(b–d) shows
three two-dimensional plots of negative-time DLE, demonstrating the ability of this
Lagrangian method to capture the whole packet of hairpin vortices in great detail.

2.2. Formation of a secondary hairpin

In addition to structure identification and characterization, an analysis of
hyperbolicity in the DLE field in this flow yields detailed information about how
the hairpin vortex evolves into a packet, as described by Zhou et al. (1999). In
particular, it is observed that the birth of a secondary hairpin structure corresponds
to a loss of hyperbolicity (or a bifurcation) along the LCS.
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Figure 6. Magnitude of 〈n, Sn〉 along spanwise-constant cross-sections of LCS surfaces at
times (a) t+ = 45, (b) t+ = 63, and (c) t+ = 99. Negative strain rate (compression normal to
the surface) is black; positive strain rate (expansion) is white with black outline.

To investigate this phenomenon, we compute the rate of strain normal to the surface
of the LCS, given by 〈n, Sn〉, where n is the unit normal to the LCS. Theorem 3 of
Haller (2002) states that the DLE ridge is an attracting material line if 〈n, Sn〉 < 0. If
this condition is not met, then the structure is not hyperbolic, and instead corresponds
to a local maximum of shear.

To compute the normal rate of strain, we follow the procedure employed in Mathur
et al. (2006). Specifically, we first find the locus of points on the LCS surface, using
a two-dimensional gradient climb in regions near the local maxima of DLE. The
direction of the normal vector is then approximated by calculating the Hessian of the
(three-dimensional) DLE field and using the eigenvector associated with its eigenvalue
of largest magnitude.

A plot of the rate of strain 〈n, Sn〉 is shown in figure 6 at three time instants in the
development of the secondary hairpin vortex. Figure 6(a) shows the structures of the
hairpin in the mid-span plane at time t+ = 45, calculated from a negative-time DLE
field which used an integration time of t+ = 45. Here, the strain rates normal to the
LCS are negative both upstream and downstream of the vortex head, indicating that
this structure is indeed a hyperbolic attracting line.

In figure 6(b), taken at t+ = 63 from a DLE field obtained using an integration time
of t+ = 63, a hump in the LCS above the hairpin legs is seen and a magnified picture
is shown in the inset. On the downstream slope of this hump small white regions of
non-negative strain rate exist, highlighted by the dashed oval, corresponding to a loss
of hyperbolicity. The bifurcation of the structure coincides with the beginning of the
formation of the secondary hairpin structure.

Lastly, figure 6(c) is calculated at time t+ = 99 from a negative-time DLE field
using integration time t+ = 99. The secondary hairpin is clearly evolving and its
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Figure 7. Two-dimensional DLE plots of the fully turbulent channel. (a) 1 % maximum Q
superimposed with the location of the three planes, (b) constant wall-normal cut, (c) constant-
spanwise cut (y+ = 33), and (d) constant-streamwise cut.

structure begins to resemble that of the primary hairpin, as the LCS begins to fold
and roll up on itself. This is particularly clear in the magnified inset. Additionally,
the sign of strain rate along the LCS alternates in a similar pattern in both hairpin
heads, indicative of the shearing rotational flow within.

Zhou et al. discuss at length the physical mechanism that results in the development
of this second and subsequent hairpin structures. The Lagrangian criteria when used in
this way offer a quantitative method for recognizing their formation and interpreting
their generation as a loss of hyperbolicity of the Lagrangian coherent structures. For
the same initial condition as used in this study, Zhou et al. observe characteristic
indications of hairpin development at t+ = 72, whereas using LCS the bifurcation
occurs and can be detected at least as early as t+ = 63.

2.3. Fully turbulent channel

Finally, this analysis was applied to the fully turbulent channel data. In figure 7(a),
the Q-criterion structures are shown as level sets of 1 % maximum value. Also shown
in this plot are the locations of three two-dimensional planes on which DLE was
calculated. The results are shown in figure 7(b–d). As expected, the LCS plotted are
clean and sharp. Several of these curves have the same shape as those of the isolated
hairpin in the respective plane, and support the notion that the fully turbulent channel
is populated with similar structures. These locations are highlighted by a white box,
and can be compared with figures 3–5.

In figure 8(a, b), the DLE and Q-criterion are plotted at the same constant-
streamwise location. This comparison highlights the fact that the LCS clearly depicts
structures in locations where the Q-criterion would not if plotted with a large
threshold. Two such structures are marked with a white box. Also, the finer resolution
of the DLE plot yields more detail than possible with the Eulerian criteria, which
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Figure 8. Constant-streamwise cuts of (a) DLE and (b) Q-criterion.

require derivatives of the velocity field and are thus restricted to the resolution of the
original data.

3. Conclusions
Lagrangian coherent structures (LCS) have been identified for various flows in a

plane channel, including an isolated hairpin vortex and a fully developed turbulent
flow, by calculating the direct Lyapunov exponent (DLE). The Lagrangian method
captures features of the flow that are familiar from flow visualization experiments,
and are also described by various Eulerian criteria currently in use, but the DLE field
yields greater detail than existing Eulerian criteria. This is partially because, unlike
Eulerian criteria, the DLE may be evaluated on a finer grid than the original velocity
data. Additionally, using the Lagrangian criteria, one may quantify the boundary of
a vortex as a local maximum of the DLE field. Whereas the size and shape of the
Eulerian structures depend on a user-defined threshold, the locations of the LCS are
independent of such parameters. Increased integration time yields greater detail, but
outer boundaries of the structures do not vary. Lastly, the DLE is truly independent
of coordinate frame and would yield the same results for a non-Galilean-invariant
coordinate transformation.

The development of an isolated hairpin vortex is studied, and it is shown that
the birth of a secondary hairpin corresponds to a loss of hyperbolicity along the
LCS. Thus, the Lagrangian criteria can provide a quantitative way of determining
when these structures are born. Previously, such events have been identified using
qualitative, visual methods (Zhou et al. 1999), but the Lagrangian method allows one
to detect these events at their earliest stages.

The benefits of the Lagrangian method have a cost: Lagrangian calculations are
more computationally intensive than any of the Eulerian criteria, as they involve integ-
ration of particle trajectories from each point at which the DLE value is desired, and
hence large amounts of time-resolved data are necessary for the trajectory integration.
However, as postprocessing represents a relatively small part of the computational
time devoted to most flow calculations, this drawback is often not severe. Each DLE
data set presented in this paper took on the order of 1–2 computational hours, using
500–1000 data sets, requiring approximately 150 GB of storage. Higher-Reynolds-
number flows would naturally necessitate a greater cost for the same calculations.
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These methods may be especially useful for time-resolved experimental data, for
instance from particle image velocimetry, which are often too noisy to compute
derivatives needed for the Eulerian criteria. DLE may also be useful as a tool to
calibrate the more easily implemented Eulerian schemes, for instance to determine
appropriate thresholds for the Eulerian criteria.
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